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The interface delocalization in the three-dimensional Ising model is studied by 
real-space renormalization group methods. The first-order cumulant expansion 
approximation is used. Defect free energies for a boundary plane of defects and 
an internal plane of defects are calculated in the whole temperature region. The 
phase diagrams are also obtained. The method and the model analyzed may 
give a correct phase diagram only in the regime of continuous interface 
delocalization. The interface delocalization is obtained for the boundary defect 
and also for the internal defect if the systems on two sides of the internal defect 
plane have a different degree of order. The delocalization transition does not 
occur in the case of the internal defect plane between two equally ordered 
systems. 
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model; real-space renormalization. 

1. I N T R O D U C T I O N  

Cri t ical  p h e n o m e n a  near  surfaces, interfaces, and  defects in var ious  mode l s  
have been extensively s tudied recently. (1-4) A b r a h a m  (4'5) has ana lyzed  the 
two-d imens iona l  ( d =  2) Ising mode l  with a line of weakened  defect bonds  
at  the b o u n d a r y  of  the lattice. I t  is poss ible  to in t roduce  the interface in to  
this system by t ak ing  sui table  b o u n d a r y  condi t ions .  At  low tempera tures ,  

when the energy terms are dominan t ,  the interface is local ized near  
the defect line. Due  to the compe t i t i on  between energy and en t ropy ,  the 
interface delocal izes at the de loca l iza t ion  t empera tu re  TD below the bulk  
cri t ical  t empe ra tu r e  Te (interface dep inn ing  t ransi t ion) .  A b r a h a m  (4'6) and  
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Abraham and ~vraki617) studied a row of weakened bonds in the interior of 
the model. They found that the interface delocalizes if the systems on two 
sides of the defect have different coupling constants. The more ordered 
system (with the larger coupling constant) promotes its order into the less 
ordered system, that is, the interface delocalizes into the less ordered 
region. However, delocalization does not occur if systems on both sides of 
the defect are equally ordered, i.e., have the same coupling constants. The 
exact results for the phase diagram and the defect free energy for both the 
boundary and internal line of defects in the d=  2 Ising model, (4-7) as well 
as a Monte Carlo simulation for the case of a boundary line of defects, (8) 
are available. 

The interface delocalization also has been found in discrete and 
continuum versions of the planar solid-on-solid (SOS) model with one- 
dimensional interface. (9 14) The case with the boundary defect line has been 
connected with the quantum mechanical problem of a particle moving in a 
semi-infinite potential well, where both localized and delocalized states are 
possible.~9 13) The internal defect line with the same coupling constants on 
both sides of the defect corresponds to the problem of a symmetric poten- 
tial for which only bound states exist, i.e., the interface is always bound to 
the defect. (9 13) The internal defect line with unequal coupling constants on 
two sides of the defect corresponds to the problem of a particle moving in 
an asymmetric, finite potential well. In this problem both localized and 
del0calized solutions are found. (14) 

Svraki6 (15) and Mihajlovi6 and Svraki6 (16) used real-space renor- 
malization group methods (17) to study the problem of the interface 
delocalization in the d = 2  Ising model. They calculated the phase 
diagrams and the defect free energies for the model with defect line at the 
boundary and for the internal line of defect bonds. The results obtained by 
the renormalization group method ~15'16) are consistent with the exact 
calculations.~4 7) 

Considering higher dimensional systems (d> 2), a few results for the 
interface delocalization problem in the SOS and Gaussian models are 
known. ~3,18) Burkhardt and Vieira (18) analysed the SOS and Gaussian 
models in higher dimensions using the mean-field theory. They found that 
the interface delocalizes for all dimensions d > 2 in the SOS model, but not 
in the Gaussian model. Bricmont et  al. ~3) studied, using exact analysis, 
several problems connected with the statistical mechanics of surfaces and 
interfaces for the SOS, Gaussian, Blume Capel, and Ising models. The 
exact analysis of the three-dimensional Ising model is mathematically 
complicated. There are expectations, supported by the mean-field theory (19) 
and heuristic arguments, ~3) that the interface delocalization phenomenon 
also occurs in the d=  3 Ising model. 
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The aim of this work is to study the interface delocalization problem 
in the three-dimensional Ising model using the real-space renormalization 
group method. We analyze delocalization of the interface for the defect 
plane at the boundary of the system and for the internal defect plane in the 
simple cubic lattice. The interface delocalization is found in the case of a 
boundary defect plane and in the case of an internal defect when the 
systems on two sides of defect plane are unequally ordered. An important 
question can be posed concerning the influence of the roughening 
transition (4'2~ at temperature TR, 0 < TR < T~, on the results of this work. 
There are two different regimes of the interface delocalization in the d =  3 
Ising model. For TD > TR we have continuous interface delocalization as in 
the d =  2 Ising model. In the second regime, for T O < TR, we have stepwise 
interface delocalization. The phase diagrams obtained in this work are 
valid only in the continuous interface delocalization regime. 

2. R E N O R M A L I Z A T I O N  GROUP FOR THE INTERFACE 
DELOCALIZATION 

We consider the simple cubic Ising lattice of N ~ spins in a zero field 
and with nearest neighbor ferromagnetic coupling 3". It is possible to 
introduce periodic boundary conditions in d - 1  = 2 directions and anti- 
periodic boundary conditions in one direction. A plane of defects with 
coupling Ka = -J /kB T is placed in the interior of the system. At one side of 
the defect plane the couplings have values K1 = --J1/kB T, and at the other 
K 2 = - J z / k B T ,  as shown in Fig. 1. We also assume that K I > K c  and 
K2 > Kc, where K c ~ T2 ~ is the bulk critical temperature, i.e., both systems 
are in the ordered phase. This represents the general model for analysis of 
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Fig. 1. The general model for analysis of interface delocalization in the three-dimensional 
Ising model. All horizontal couplings in the internal defect plane have values K a. All couplings 
at the left side of the defect plane have values K1, and those at the right side have values Kz. 
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the critical phenomena near surfaces, interfaces, and defects in the three- 
dimensional lattice. The case of a boundary defect plane is obtained from 
this model if we set K~ = o% K2 < o% and Ka< K2. The conditions K1 # K2, 
Kd # 0 correspond to the model with an internal defect plane. Finally, for 
Ka = 0 we obtain two independent models with free surfaces. It should be 
noted that our model for the study of the interface delocalization in d = 3 is 
a simple generalization of its two-dimensional analog. (16) The real-space 
renormalization group method (17) has been used in the past for analysis of 
surface critical phenomena in the d=  3 Ising model. (21'22) 

In this work we use real-space renormalization group methods to 
study interface delocalization in the d=  3 Ising model with a defect plane. 
We apply the first-order cumulant expansion approximation. In previous 
papers (15'a6'23'24) this approximation has been successfully used in the 
analysis of different interfacial problems. In Ref. 23 we calculated the inter- 
facial free energy of the square Ising model using several versions of 
cumulant, the Migdal-Kadanoff and cluster approximations to the renor- 
malization-group equations. We introduced the interface into the system as 
a "seam" of defect couplings Ka = -K.  The defect free energy is then equal 
to the interfacial free energy. We also gave a general analysis of problems 
within real-space renormalization group schemes for the calculation of 
defect and interracial free energy in a hypercubic, d-dimensional Ising 
model. The results for the interfacial free energy obtained by the first-order 
cumulant expansion approximation are quantitatively consistent with the 
exact result in d = 2  (23) and with the known rigorous results (4"25) in 
d =  3. (24) The same approximation also yields good quantitative results for 
the interface delocalization problem in the d=  2 Ising model. ~ 

We find the following recursion relations for our model in d=  3: 

K~=4Kj(S(Kj)) 2, j =  1, 2 (1) 

K'd = 4Kd( S(K~) ) (S(K2)) (2) 

where (S(Kj)) is the average value of the spin in the basic 2 x 2x2  cell. 
The expression for (S(Kj)) depends on the choice of the projection rule. 
We use the M1 projection rule, which has been introduced in the renor- 
realization group analysis of surface phenomena, (2~'=) but is also suitable 
for interracial problems. (23'24) 

We first consider the model with the boundary defect plane. Here 
K~=oe, limK~oo (S(K1))=  1, and the recursion relations (1) and (2) 
become 

K;=4K2(S(K2)) 2 (3) 

K'a = 4Ka( S(K2) ) (4) 
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Following Abraham's  work in two dimensions, <5) we take Kd=aKz, 
0 ~< a ~< 1. Relations (3) and (4) after n iterations become 

r t - - 1  

K~m=4"K2 l-[ ( S ( K ( i ) ) )  2 (5) 
i = 0  

n 1 

K(a ") = 4"aK2 [ ]  (S(K(2 ~ ) (6) 
i = 0  

where K(2 i) is the ith iterate of K 2. The couplings Kr ~176 and K~d ~) are 
obtained from (5) and (6) after infinitely many iterations (which is in 
practice always less than 20). If we disregard for the moment  the existence 
of the roughening transition temperature, we can say that two possibilities 
can occur: if ~(oo)~. j,.{oo) the interface is localized, whereas the case * x  d ~ a ~  2 

K(d~)>K~ ~176 corresponds to the delocalization of the interface. The 
delocalization transition temperature To(a) for a given value of a is 
obtained from the condition KCd ~) = K(2 ~176 Therefore, the phase boundary is 
given by 

a= f i  ( S(K(2~ ) (7) 
i = 0  

Fig. 2. 
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Phase diagram for interface delocalization in the model with boundary defect plane. 
The interface is localized in the region below the curve. 
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As we say in the Introduction, the phase diagrams in this work are correct 
only in the regime of continuous interface delocalization, i.e., for TD > TR. 
The method and the model we analyze here cannot give stepwise interface 
delocalization at TD < TR. For K~a ~) >/s ~ TD < TR we can only say 
that the interface is not on the defect, but it can still stay near the defect. 
The delocalization phase diagram for the boundary defect plane obtained 
from (7) is shown in Fig. 2. The defect free energy is defined a s  (4"25) 

F(K, K a )  = lim N-2[ln Z ( +  - ) - In Z (  + + )] 
N ~ o o  

(8) 

where Z ( +  +)  [ - Z ( + - ) ]  is the partition function of the system with 
periodic (antiperiodic) boundary conditions. From (8) and the recursion 
relations (3) and (4) we find 

and 

F(K, Ka)= l im ( 2K~~ .~ \ - - - - ~ c - /  

F ( K ,  Ka)  = l im ( -  2K(0"] 
" ~  \ 4 i  / / 

if K~)<K (i) (9) 
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K 

Fig. 3. Defec t  free ene rgy  for  the m o d e l  wi th  b o u n d a r y  defect.  

K 

The defect free energy is calculated from (9) below the delocalization 
transition temperature TD(a) and from (10) above TD(a). Figure 3 shows 
the defect free energies for the model with the boundary defect plane. 
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Fig. 4. Delocalization phase diagram for the model with internal defect plane obtained for 
various values of the parameter  ~ = K 2 / K  1 . The interface is localized in the regions below these 
curves. For ~ = 1 (K2= KI) the interface is always localized. 
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Fig. 5. Defect free energy for the model with internal defect and c~ ~ 1 (K 2 7 ~ K~). 
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Now, consider the interface delocalization for the internal defect plane, 
i.e., K a < K 2 < K1, Ka = aK2, 0 ~< a ~< 1. By iterating the recursion relations 
(1) and (2) we get 

n - - 1  

K} ") =4"Kj  I ]  <S(K]~ 2, j =  1, 2 (11) 
i = 0  

n - - 1  

K(")-  4"aK2 1-I <S(K~~176 (12) d - -  

i = O  

The phase diagram calculated from the condition K(a ~) = K~ ~176 is given by 

[,0o ,>] a = i) i) 
i k i = O  

and it is shown in Fig. 4. In the same way as for Eq. (7), this phase 
diagram is valid only in the regime of continuous interface delocalization. 
Figure 5 shows the defect free energies in the case of the internal defect 
plane that are obtained from (9) and (10), using the recursion relations 
(11) and (12). 

Finally, for KI = K z = K  and arbitrary Ka=aK#O,  the recursion 
relations (1) and (2) become 

K' = 4K<S(K) >2 (14) 

K,d= 4Kd< S(K) >2 = 4aK< S(K) >2 (15) 
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Fig. 6. Defect free energy for the model with internal defect and ~ = 1 ( K  2 = K 1). 
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Because a < 1 is assumed, the inequality K~a n/< K ~n) remains for arbitrarily 
large n, and the interface is always localized. The defect free energy in this 
case is calculated from (9), with (14) and (15), and the result is shown in 
Fig. 6. 

3. CONCLUSIONS 

In this work we have studied the interface delocalization in the three- 
dimensional Ising model for the boundary defect plane and the internal 
defect plane. We use the first-order cumulant expansion approximation. 
Our calculations confirm the expectations of the mean-field theory ~19) and 
heuristic arguments ~13) that interface delocalization occurs in the three- 
dimensional Ising model. Delocalization of the interface is found for the 
boundary defect plane and the internal defect plane between two systems 
with different degree of order. In the case of the internal defect plane, when 
coupling constants on both sides of the defect are the same, no 
delocalization is found, in analogy to d=  2 model. 
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